Açık kaynak, bugün GPT’nin trilyonlarca parametresiyle rekabet edemez (çünkü bu modelleri üretmek için bilgi işlem enerjisini finanse etmek gereklidir), genellikle “gerekli olanın” nasıl kullanılacağı açıklanmadan ona karşı ilk verilen argümandır nasıl kullandıklarına veya nasıl dağıttıklarına bağlıdır
Bu modeller, aynı üniversitede geliştirilenler gibi “sağlam” araştırmalarla oluşturulmuştur Stanford Üniversitesigibi kar amacı gütmeyen araştırma laboratuvarlarında EleutherAIve elbette Meta veya Google gibi Gafa’dakilerde Daha hızlı hareket edebiliriz ve her şeyden önce tek bir aktörün yol haritasına bağlı kalmayız Çünkü yüksek lisansların iş dünyasında kullanılabilmesi için jenerik modellerin daha etkili olabilmesi için şirket verileriyle zenginleştirilmesi gerekiyor Sıklıkla altyapılarla bağlantılı olan diğer alanlarda, öncülük yapar ve dağıtımların çoğuna hakim olur ve bir standart haline gelir Github için Microsoft veya Java için Oracle gibi milyarlarca dolar harcayan şirketlerin hiçbir büyük açık kaynak satın alımı daha sonra piyasada bu kadar büyük bir etki yaratmadı !
Açık kaynağı tercih etmenizin nedeni, yatırım yapmadan kullanım için ödeme yapmak yerine bunu tek başınıza, yatırımlarla yapabilmenizdir Genel olarak rekabet yeniliğe yol açar
Üç banknot YeşilSI bu değişiklikleri araştırdık aktörlerTHE kullanır ve hatta kesinlikle üretmenin yolu kodlanmış Kaynakların aşırı tüketimini teşvik eder Bu, tüm bilgisayar bilimi okullarının ve Cornell Üniversitesi’nin bu yaz yayınlanan araştırmalarının en büyük konusu ve Ekim başında güncellendi (her şey hızla ilerliyor!) farklı modellerin ilgisini gösteren karşılaştırmalar Sadece ilk seferin hayret verici etkisini değil, bu yeni kullanımlara yapılan yatırımların karlılığını da arıyorsak, YeşilSI açık kaynağın Bulut kaynaklarının satışına dayalı ekonomik modelden çok daha hızlı bir şekilde daha karlı olacağına inanıyor
Genellikle akademi ve uluslararası değişimlerle bağlantılı olan ve hayatını özel uygulamalardan bağımsız olarak yaşadığı alanlar vardır
Çünkü modeller arasındaki karşılaştırmanın ötesinde, model testlerinin sapmaları önlemek için otomatikleştirilmesi ve yaşam döngüleri boyunca düzgün bir şekilde yönetilmesi gerekecektir Temel olarak yeniden kullanabilirsiniz ancak hiçbir şey yapamazsınız Her halükarda Çinlilerin kendilerine güveni olmazdı 😉
İkinci argüman genel olarak açık kaynaktır: kod açıktır ve model şeffaftır Bu nedenle, şirketleri kitlenin söylendiğine inandıran, hatta rehinelerini (Bulutlarını terk edemeyen CIO’ları) ikna etmeyi başaran bazı (Bulut) satıcıların pazarlama söylemlerinden kaçınalım Bulut Yasası ve ulusal egemenlik göz önüne alındığında, bir Bulut satıcısından gelen özel bir Bulut bile “her yerde” olabilir Ve açık kaynak teklifi, sadece bir sineği ezmek istediğinizde stokta sadece buharlı silindirler bulundurmaz bilmiyoruz
genel-15
Bu nedenle açık kaynak modelleri, şirket içi başarılara uyarlanmış, şirketin yayınlanmasını istemediği verileri işleyen ve aşırı miktarda BT kaynağı (ve dolayısıyla maliyet) kullanmadan bir oyun alanı sunar bu da daha fazla gizlilik ve güvenlik sağlayabilir Tescilli Yüksek Lisans’ların opaklığının özgüllüğünü bu argümana dahil edebiliriz Piyasaya sürülmesinden bir yıl sonra, ChatGPT ile iPhone’da doğal bir şekilde sohbet edebiliyoruz
Son olarak, herhangi bir açık kaynak kullanımında olduğu gibi lisans seçimi ve istenilen kullanım amacına uygunluğu da önemli bir sorudur
Bu nedenle, bunları bir yapay zeka stratejisine entegre etmek için bakmamız gereken şey, bu sınırların zayıflatılma hızıdır Kendisine indirdiğimiz bir çizimi görebiliyor ve anında oluşturduğu bir görüntüyle bize vizyonunu aktarabiliyor Bu tek değil
Çünkü adından da anlaşılabileceği gibi GPT-4, GPT-3 Ancak 4, 3,5’tan fazla mıdır? Hayır, bu pazarlama! Hangi sorundan bahsettiğimize bağlı Bu nedenle bu verileri iyi korumak ve ortalıkta bırakmamak gerekecektir Dolayısıyla bu göz ardı edilebilecek bir avantaj değil ve bu nedenle, her şeye ihtiyacı olan kişileri sunucularında “evde kalmaya” ikna etmek için açık kaynak teklifi hızla gelişiyor Meta, Salesforce, MPT veya GPT-J gibi modellerin çoğu bunu iyi anlamış ve benimsemiştir
Yüksek Lisans’larla birlikte aniden üniversite modelinden, standart modelin devasa finansman yöntemleriyle rekabetçi modele geçtik İşletmenin merkezinde yer alan umut verici kullanım senaryoları belirlendikten sonra, sanayileşmeyi açık kaynak modelleriyle ve şirket içi becerilerin geliştirilmesiyle inceleyin Kişi onu indirebilir, kurabilir, kodunu okuyabilir ve kendi sunucularında kullanarak uygulamalar geliştirebilir Tescilli bir model söz konusu olduğunda, bu konu da mevcuttur ve sihirle çözülmez, ancak tedarikçinizin (parasını ödediğiniz) becerileri ve kaynakları harekete geçirilir… ve bu nedenle taahhütte bulunmadan önce kontrol edilmesi gerekir Peki açık kaynaklı modellerin sahip olabileceği avantajlar nelerdir?
İlk avantaj, dağıtım seçenekleri üzerinde neredeyse tam kontrol sağlayan açıkça özelleştirmedir
İnsan ve makine arasındaki ilişkide temel varsayımlar değişiyor; HMI (insan makine arayüzü) buzdağının sadece görünen kısmıdır bu dönüşümün
Şimdi açık olalım, bugün açık kaynak modellerinin sınırları var, bu, açık kaynağın şu anda geliştirilmekte olan üretken yapay zekanın gelecekteki işletim modelinde yerini alma yeteneğini hiçbir şekilde ortadan kaldırmasa bile Denetlenebilir, bu da kullanımına olan güveni ve uygun olduğu durumlarda uygulamaya geçebilecek gelecekteki düzenleyici çerçeveyi doğrulama yeteneğini güçlendirir Bu yeni yazı, ortaya çıkan bu araçların önemli bir boyutunu, bunların açık kaynak veya tescilli model Bu, Bulut+Yüksek Lisans Modeli kombinasyonunu düşündüğümüzde tek bir veya iki sağlayıcıya olan bağımlılığın açıkça azalmasıdır Birden fazla açık kaynaklı LLM modeli mevcuttur ve tek yapmanız gereken özel Github sayfası yirmiden fazla ciddi adayla kendinizi ikna etmek
Bu nedenle şu anda doğru kombinasyon kesinlikle çok az yatırım ve kullanım başına ödeme ile özel modellerle test etmektir
Microsoftkısmen finanse eden OpenAI ChatGPT kullanımıyla ortaya çıkabilecek olası hukuki başvurulara karşı müşterilerini koruyacağını duyurdu Üretken yapay zeka, yazılımı güçlü bir şekilde etkilediği gibi, dijital hale gelen şirketlerin yapısını ve organizasyonunu da etkiliyor
MetaEn küçük oyunculardan biri olmayan LLM’yi (Llama 2) açık kaynak olarak başlattı Fransızca olarak alıntı yapabiliriz Mistral 7B Yelkenlerinde rüzgar olan ve iyi performanslar sergileyen ve bunlarla karşılaştırılan ClaudeGreenSI’nin daha önce bahsettiği ancak sahibinin seçimini yaptığı Kararlılık Yapay Zekası Veya Veri tuğlaları
İçin YeşilSIişletme maliyetleri, çözülecek soruna bağlı olarak doğru parametrelerle doğru LLM’yi seçme yolunda çok hızlı bir şekilde ilerleyeceğimiz anlamına gelecektir
Öte yandan, aktörlere ilişkin paylaşımda da görüldüğü gibi, bir ekonominin temel ekonomik modeli Microsoft örneğin size Azure Bulutu satmaktır Son olarak, açık kaynağın tescilli tekliflerle rekabete girdiği alanlar, aynı özelliklere sahip olmayan ve uygulamalara bağlı olarak her birinin şirketlerin veya kamu hizmeti oyuncularının ilgisini çektiği iki iş modeli vardır 5 yeterli olduğunda neden bulut sağlayıcınızdan daha fazla kaynak satın alasınız ki?
Şimdi konunun özünü, pazarlama düşüncesine meydan okuyan açık kaynak perspektifinden inceleyelim; yalnızca özel bir bulut altyapısı üzerindeki özel bir model, yapay zekayı benimseyen bir işletmeyi dönüştürebilir Ancak diğer birçok model açık kaynakta doğdu ve öyle kaldı
ChatGPT ile ilgili ilk deneylerden sonra açık kaynaklı bir motora geçmenin daha ilginç olup olmadığı sorusu gerçekten stratejik bir sorudur Herkes özel bir alternatifin var olup olmadığına bakmadan bunu kullanıyor
YeşilSI 2022’nin sonunda üretken yapay zekanın gelişiyle BT ortamının bazen yüzeysel, bazen derinlemesine yeniden şekillendiğine inanıyor Ama ne YeşilSI bu modeller için not şu ki Apache 2 not etmek sorumlu yapay zeka lisansı (RAIL), açık erişim lisanslama yaklaşımını, sorumlu yapay zeka vizyonunu güçlendirmeyi amaçlayan davranışsal kısıtlamalarla birleştiren yeni bir telif hakkı lisansıdır Ancak grafikteki tüm modellerden daha iyi performans gösteren GPT-4, aynı zamanda çok daha fazla parametre kullanıyor ve bu nedenle hem eğitilmek hem de çalışmak için çok daha fazla enerji tüketiyor Bunun nedeni genellikle birkaç iyi perinin bu gelişmelere büyük katkıda bulunarak kalkınma modelini etkilemesi ve finanse etmesidir YeşilSI Bu modele karşı hiçbir yanımız yok, sonuçta İnternet araştırmalarını çevrimiçi reklamcılık yoluyla finanse ettik, ancak bunun pek de erdemli bir mekanizma olmadığının farkında olalım Aynı zamanda multimedya haline geliyor ve bir insanın yapacağı gibi tepkisini kişiselleştirmek için verilerimizi entegre ediyor Örneğin GPT-4’ün nasıl eğitildiğini, eğitim veri setlerinin ne olduğunu, nasıl iyileştirildiğini vb fiilen Bu nedenle AI zaten açık kaynak lisanslarını değiştirdi!
Beklenen bir diğer gelişme, lisansın kabul edilmesiyle, LLM’lerin yaşam döngüsünün izlenmesi ve öğrenme maliyetlerinin bir havuzda toplanması için gerekli olan kullanıcı geri bildirimlerinin paylaşılması zorunluluğunun getirilmesi olacaktır Dijitalle birlikte her firmanın bir yazılım yayıncısı haline geldiği söyleniyor
OpenAIve bu yüzden GPT, açık kaynak olarak doğdu, daha sonra özel mülkiyete geçti Bugün lisanslamada bu bir kör nokta ama bu yönde taleplerin geldiğini görüyoruz Bu bir güvenin kabulü mü, yoksa güvensizliğin tam tersi, yani riskin var olduğu ancak “sigortalı” olduğu anlamına mı geliyor? Dikkatle takip edeceğiz”sınıf eylemi” Amerikalı bağımsız yayıncılar tarafından ChatGPT’ye karşı dava açıldı, çünkü onlar kazanırsa ve siz de ChatGPT’yi roman benzeri metinler oluşturmak için kullanırsanız, sıradaki siz olabilirsiniz… Microsoft’un kalkanının hemen arkasında, eğer direnirse 😉
Açık kaynak için üçüncü argüman, geliştirmenin işbirlikçi olduğu gerçeğidir 0 ve MIT gibi izin verilen lisanslar, kullanıcıların yazılımı minimum düzeyde kısıtlamalarla kullanmasına, değiştirmesine ve dağıtmasına olanak tanır Ve ne kadar çok satın alırsanız, modeli o kadar karlı olur Birçok araştırma start-up’ı tarafından istismar ediliyorlar 5’ten daha iyi değil
İlk sınırlama belki de modellerin yaşam döngüsünün yönetimidir ve bu sizin sorumluluğunuzda olduğundan daha karmaşık olacaktır Bu nedenle, bu kısa ilk yılın ardından üretken yapay zekaya yönelik geliştirme modeli uzun vadede henüz oluşturulmadı Kanınızla şeytana imza atmadan önce, çünkü Orta Çağ’da üretken yapay zeka hakkında böyle düşünürdük, seçiminizin avantajlarını ve faydalarını düşünmek için beş dakikanız var mı?
BT’nin farklı alanlarında açık kaynak her zaman aynı rolü oynamaz